
A GPU-Accelerated RAG-Based Telegram Assistant for Supporting
Parallel Processing Students

Guy Tel-Zur
Ben-Gurion University of the Negev

Beer Sheva, Israel

ABSTRACT
This project addresses a critical pedagogical need: offering students
continuous, on-demand academic assistance beyond conventional
reception hours. I present a domain-specific Retrieval-Augmented
Generation (RAG) system powered by a quantized Mistral-7B In-
struct model[4] and deployed as a Telegram bot[9]. The assistant
enhances learning by delivering real-time, personalized responses
aligned with the "Introduction to Parallel Processing" course mate-
rials [1]. GPU acceleration significantly improves inference latency,
enabling practical deployment on consumer hardware. This ap-
proach demonstrates how consumer GPUs can enable affordable,
private, and effective AI tutoring for HPC education.
ACM Reference Format:
Guy Tel-Zur. . A GPU-Accelerated RAG-Based Telegram Assistant for Sup-
porting Parallel Processing Students. In Proceedings of Workshop on Edu-
cation for High-Performance Computing (EduHPC25). ACM, New York, NY,
USA, 9 pages.

1 INTRODUCTION
Large Language Models (LLMs) have revolutionized human- com-
puter interaction. However, deploying these systems in a privacy-
preserving and cost-effective way remains a challenge. This paper
describes the development of a local Retrieval-Augmented Genera-
tion (RAG) assistant using a quantized version of Mistral-7B model.
The system is deployed as a Telegram bot to support students en-
rolled in the "Introduction to Parallel Processing" course[8]. It runs
entirely on a local machine with a consumer GPU, ensuring both
privacy and responsiveness. The term RAG was coined by Lewis, P.
et al[3]. In the words of Vinton Cerf: "RAG systems connect LLMs
to external, verifiable knowledge bases, allowing them to ground
their responses in current, curated information rather than relying
solely on their training data. This dramatically reduces the produc-
tion of factual errors and hallucinations. Some research indicates
improvements of 42% − 68% and even higher in specific domains,
such as medical, AI when paired with trusted sources"[1].

2 PROJECT DESCRIPTION
I have been teaching Parallel Processing for more than 20 years.
In 2014 I described the course called "An Introduction to Parallel
Processing" in the EduHPC 2014 workshop[7]. The current course

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EduHPC25, 2025, St Louis, MO
© Copyright held by the owner/author(s). Publication rights licensed to ACM.

web site is available at [8]. Every lecturer is committed conduct re-
ception hours, on a weekly basis, for answering students questions.
sometimes this time slot isn’t enough especially toward the final ex-
aminations dates where the students are more focused on learning
toward the exams and have more questions to ponder. In addition,
some of the student may feel shy and will avoid asking questions
during these hours. Today when AI is becoming so advanced it is
possible to provide a solution to these needs where a smart agent
can be available continuously 24 × 7 × 365. When this project idea
triggered my imagination, a few months ago, developing a smart
agent was still a complicated task. However, with the accelerating
pace of AI it is now becoming a very popular topic and there are
many alternative ways to implement smart agents. However, the
project that I describe here still has a few unique features:
• This project is built using only open-source tool. This means
that there are no licensing issues, no payments, and everything is
running on a stand alone computer so that privacy is kept if that is
important to the users.
• This smart agent uses a Telegram interface which is available
from any platform (desktop, mobile phone, tablet, etc’).
• The smart bot can run on a commodity computer preferably with
a Graphics Processing Unit (GPU). In this project I use an ASUS
TUF F17 laptop with 32GB RAM and an Nvidia GeForce RTX 4060
GPU, and the response time was found to be reasonable. In addition,
the smart agent project simplicity allows it to be implemented as
an educational assignment in AI related courses in addition to the
main goal of helping students.

3 DEPLOYMENT
The course slides were merged into a single PDF file and together
with the electronic version of the course textbook[10] served as
the knowledge base for the smart-agent. A document preparation
pipeline is next in order to build a searchable knowledge base for
the RAG system.

A schematic chart showing all the project building blocks is
shown in Figure 1. A screen capture of the Telegram window show-
ing a dialog between the user and the agent is shown in Figure
3.

The Embeddings Generator converts each chunk of the course
documents into numerical vector embeddings. This stage uses
the open-source all-MiniLM-L6-v2 embedding model locally (via
sentence-transformers), ensuring privacy and low cost. The Vector
Database (FAISS) stores the embeddings and their metadata for fast
similarity search. It enables retrieval of the most relevant chunks
based on semantic similarity to user queries. The Chunking and
metadata indexing splits documents into manageable pieces (e.g.
512–1024 tokens) with overlap and keeps source references for
later citation. The Retrieval-Augmented Generation (RAG) pipeline

EduHPC25, 2025, St Louis, MO Guy Tel-Zur

Figure 1: The smart agent project block diagram.

A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students EduHPC25, 2025, St Louis, MO

retrieves relevant information from the knowledge base and feed
it to the LLM. The retriever accepts a user query and searches the
vector DB for top-k most relevant chunks. Then it returns both the
original text and source metadata. The context builder combines
the retrieved chunks into a context prompt. It ensures the LLM
receives only the most relevant and concise data. The local LLM
inference (Mistral 7B) generates with the retrieved context coher-
ent answers. Mistral 7B (Quantized GGUF) is loaded locally via
llama-cpp-python with CUDA GPU offloading for fast inference. it
uses both the user query and the retrieved context to craft accurate,
grounded responses. The Telegram Bot provides an easy, conver-
sational user interface. The bot back-end receives user messages
from Telegram and forwards them to the RAG + LLM pipeline. It
is also responsible to the response handling, i.e. sending back the
generated answer. Finally, there is the orchestration and container-
ization which make the deployment reproducible and portable. I
used Docker and docker-compose. This framework encapsulates all
dependencies (Python, CUDA libraries, llama-cpp-python, FAISS).
Using one-command there is a startup of the entire stack. In addi-
tion there is an environment configuration .env file that controls
model path, GPU layer settings, and runtime parameters.

The following paragraph adds some more details about the
project building blocks:

The core components include:
•A Sentence-Transformers (’all-MiniLM-L6-v2’)[6] for embedding
course content.
•A FAISS vector store for fast semantic retrieval.
•AquantizedGGUF-formatMistral-7Bmodel accelerated by llama.cpp
and CUDA[4]requiring ∼ 4.07 GiB of disk space.
•A Telegram bot interface to support real-time interaction.

all-MiniLM-L6-v2 is a specialized, compact, and efficient AI
model that takes a sentence or short paragraph and converts it
into a string of numbers, called a vector embedding, which captures
its semantic meaning. This process allows computers to understand
and compare the meaning of different pieces of text, not just the
words themselves.

The model takes a sentence like "I love dogs" and another like
"I adore canines." Even though the words are different, the model
understands they have a similar meaning. It will then generate two
numerical vectors that are very close to each other. On the other
hand, the vector for "I love food" would be much farther away.

This ability to turn meaning into numbers makes all-MiniLM-
L6-v2 useful for several tasks:

Semantic Search: Instead of just finding documents with key-
words, one can search for a concept. For example, a search for
"places to get coffee" could return results for "cafes in my area."
Clustering: It can automatically group similar pieces of text to-
gether. One could give it a list of customer reviews and it would
sort them into groups like "reviews about customer service" and
"reviews about product quality." Sentence Similarity: One can use
it to find how similar two sentences are to each other, which is
helpful for things like finding duplicate questions in a forum.

The name "MiniLM" highlights its key advantage: it’s a much
smaller and faster version of larger, more powerful models. This
makes it ideal for applications that need to run quickly or on devices
with limited resources, like a mobile app or an embedded system.

The "L6" means it has 6 transformer layers, and "v2" indicates it’s
an updated, improved version.

A FAISS (FacebookAI Similarity Search) vector store is a database
designed to store and quickly search through large collections of
numerical representations of data, known as vectors. Think of it
as a highly specialized, incredibly fast search engine for abstract
concepts rather than keywords.

[4] and the associated paper 2 describe Mistral 7B, a large lan-
guage model (LLM) which is developed by the French company
Mistral AI. The "7B" in its name indicates that the model has 7.3
billion parameters. It’s known for being powerful and efficient for
its size, making it a strong competitor to larger models for certain
tasks. Mistral 7B is also notable for its permissive license, which al-
lows for free use and modifications. After the RAG system retrieves
the most relevant chunks from the knowledge base, it sends this
retrieved context together with the user’s query to the language
model. Mistral 7B then uses both the query and the retrieved con-
text to generate a complete, coherent, and contextually grounded
response. Because of its relatively small size compared to larger
models, Mistral 7B can run efficiently on local hardware while
still producing high-quality answers. The role of Mistral 7B is not
performing the retrieval itself — that’s done by the RAG pipeline
— but it integrates the retrieved data into its answer generation.
Regarding its efficiency: Calling out its small size explains why it
is practical to use locally and gives good response times on GPU.
The output quality: since Mistral 7B is a general-purpose LLM, so
it can combine the retrieved knowledge with its own contextual
reasoning ability to produce complete answers.

Telegram bot is an automated program that runs inside the Tele-
gram messaging app. It’s an account controlled by software, not a
person, and it can perform various tasks like answering questions
as in this project. The Telegram bot is created by "Bot Father" which
is a special Telegram bot that is used to create and manage other
bots like the one described in this project. When working with Bot
Father one should first create the bot using the /newbot command.
Then a unique access token is generated (which must be kept se-
cretly) is created after invoking the /token command. This token
must be available to the container as an environment variable to
be defined inside the .env file. Finally, there is a /setname command
to set the bot name.

In order to successfully build the project a very delicate depen-
dency structure between the various packages must be kept. In
order to do that and to preserve reproducibility a requirement.txt
file is a must. Building the container is done as follows:

docker compose build –no-cache –build-arg CUDA_ARCH=89
and then running it from the project root directory:

docker compose up -d
The project tree is simple and straight forward. It is built in a

standard structure suitable for using docker, see Figure 2.
In order to verify that the container is running while using the

GPU and is connected to telegram one could check the log file - see
Appendix B.

It is recommended but not mandatory to use is this and alike
projects a container manager such as Portainer[5] which allows
better control on the containers management and control. Figure

EduHPC25, 2025, St Louis, MO Guy Tel-Zur

Figure 2: The project tree structure.

Figure 3: The Telegram chat window.

4 shows the container load. The two peaks seen in the CPU load
graph correspond to two queries.

Benchmarking.

"What you can’t measure doesn’t exist"

The most relevant performance factor for this system is the number
of Tokens Per Second (TPS).

Let us compare the estimated performance on 3 platforms 1) A
typical laptop running the model on the CPU 2) A laptop running

Figure 4: The Portainer containers management system.

on the GPU, and 3) A cloud server such as AWS g5.xlarge with a
stronger GPU. Where all of them use the Mistral 7B model.

System Description Estimated TPS
1 A typical laptop running on the CPU ∼ 0.5 − 1.5
2 This system, a laptop running on the GPU

(Nividia GeForce RTX 4060 with 8GiB)
about 16 (measured in a benchmark)

3 A cloud server such as AWS like g5.xlarge
which has 4 vCPUs, 16GiB memory and
Nvidia A10 architecture with 24GiB mem-
ory but with an average on-demand cost
of $1.22 per hour!

30-100

In Appendix B enclosed a log file with information about the
container performance. Let us now give an interpretation of the
results on the RTX 4060 Laptop GPU (8 GB VRAM) and Mistral-7B
Q4_K_M model.

The mean generation speed, gen_tps ∼ 16tokens/s. The total TPS
is close to the generation TPS. Another important factor is the time
from request to first token (first token latency) which is called for
short as TTFB, The mean TTFB is about ∼ 0.1s. The total latency
can be estimated according to

𝑇𝑡𝑜𝑡𝑎𝑙 ≈ 𝑇𝑇𝑇𝐹𝐵 + 𝑁𝑜𝑢𝑡

𝑅𝑔𝑒𝑛

where 𝑁𝑜𝑢𝑡 is the number of tokens generated and 𝑅𝑔𝑒𝑛 is the
generation speed (toekns per second, gen_tps in the code). For
example, if we assume 𝑇𝑇𝑇𝐹𝐵 = 0.1s, 𝑅𝑔𝑒𝑛 = 16 toekens/s, and
𝑁𝑜𝑢𝑡 − 150 tokens, we get 𝑇𝑡𝑜𝑡𝑎𝑙 ≈ 9.5s.

Summary The RTX 4060 Laptop GPU is performing as expected:
≈ 0.1s TTFB and ≈ 16 tokens/sec on a quantized 7B model. That’s
good for smooth chatbots, teaching demos, or personal assistants.
To scale to more users or bigger contexts, there will be a need for
more VRAM (desktop 4090/4080, or cloud A100).

The smart agent performance benchmark shows that it feels
responsive and can serve as a production-ready on a RTX 4060
laptop GPU!

4 PORTABILITY AND REPRODUCIBILITY
All the codes and instructions how to build the project are available
at: https://tel-zur.net/papers/EduHPC25. In order to save space
Mistral 7B is absent from this package and has to be separately
downloaded from the Mistral website[4]. In order to allow the
container to use the GPU we must first install on the host computer
the Nvidia container toolkit which can be done by following the
next 3 steps:
1. Add the NVIDIA GPG key
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \

https://tel-zur.net/papers/EduHPC25

A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students EduHPC25, 2025, St Louis, MO

sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit.gpg

2. Add the correct repo (for Ubuntu 24.04 -> "ubuntu24.04")
distribution=\$(. /etc/os-release; echo \${ID}\${VERSION_ID})
curl -s -L https://nvidia.github.io/libnvidia-container/ubuntu24.04/\
libnvidia-container.list | \\
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit.gpg]\
https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

3. Update and install
sudo apt update
sudo apt install -y nvidia-container-toolkit

5 FUTUREWORK
The current system performs quite good but it can be further opti-
mized by fine-tuning several parameters.

1. Batch tuning: Tuning the number of batches. Larger n_batch
can improve throughput but may hit VRAM limits. Currently I used
n_batch=256.

2. The number of GPU layers. The number of transformer layers
(out of the total model depth) to offload from CPU to the GPU. A
7B model like Mistral has 32 transformer layers. For example if this
number is set to be 32, it tries to put all layers on GPU. However,
there is a trade-off, on one had more layers on GPU has a faster
inference, on the other hand more layers means more VRAM usage.
In this test using the RTX 4060 GPU full 32 layers may exceeds
VRAM. The sweet spot should is around 20 layers on GPU, and the
rest on CPU. The value can be seen in the log file in the appendix.
𝑁_𝐺𝑃𝑈 _𝐿𝐴𝑌𝐸𝑅𝑆 = 0 means that we use only the CPU (lowest
VRAM and slowest), 10 − 20 is a mixed CPU-GPU and is a good
compromise, = 32+ means a full GPU offload. This mode needs
∼ 4− 5 GiB just for the weights on a Q4_K 7B model and additional
VRAM for the KV and the compute, which might cause Out of
Memeory (OOM).

3. Tensor split: Fine-grained control over how model tensors are
divided across multiple GPUs. In this project I use only a single
GPU and the tensor split value is 0.85, which balances between
the CPU (0.15) and the GPU (0.85). For a single GPU setups, tensor
split values are largely irrelevant, but they become important in
multi-GPU systems. Tensor split value is configured in llama.cpp
and lamma-cpp-python.

4. The maximum context window n_ctx in the code which is the
number of tokens the model can "see" at once. n_ctx controls the
size of the Key-Value (KV)-cache that stores intermediate key/value
tensors for the attention mechanism. If, for example, a token is
usually 3-4 characters of text it means that 1024 tokens are equiva-
lent to about 700-800 words. In the present code we set n_ctx=768
which means the model can consider up to 768 tokens (prompt
and generated output together) in one pass which is roughly about
600 words. This parameter should also be tuned, the higher n_ctx
the higher the memory usage will be (VRAM and CPU RAM) and
the hight the smart agent can reason over long context. On the
other hand small n_ctx results in a shorter VRAM and it might
lose context on long prompt but it will react faster because it will
compute less. As a rule of thumb, increase n_ctx only when you
see the model truncating context (answers ignoring retrieved text),
otherwise, keep it small to stay fast.

5. Low VRAM. Tuning all the above parameter should be done
such that we will always avoid Out of Memeory (OOM) when
running long contexts.

6. Driver + build improvements: Newer llama.cpp builds (com-
piled with CUDA graph optimizations). Setting flash_attn=True
in llama_cpp tells it to use Flash Attention kernels instead of the
standard attention implementation. Flash Attention is a highly opti-
mized CUDA kernel that computes attention in𝑂 (𝑛2) time but with
𝑂 (𝑛) memory, by streaming the computation and avoiding storing
the full attention matrix. This gives a big speedup and lower peak
VRAM usage on supported GPUs, especially for long context sizes
and larger batch sizes. flash_attention is supported on compute
capability ≥ 7.0 (Volta and newer) The RTX4060 has a compute
capability of 8.9 and supports it.

7. Quantization of the model. This affects the number of bits per
weight. The lower this number the less VRAM it takes. Currently
we use Q4_K_M which seems to be a good balance. Q3_K_M may
reduce VRAM further but at the cost of quality degradation.

To sum up the current setting which is throughput focused is:
N_GPU_LAYERS=20, N_CTX=768, N_BATCH=256, FLASH_ATTN=1.
These optimizations form a roadmap for scaling the system to sup-
port more users, longer contexts, and larger modules.

6 CONCLUSIONS
The smart agent for the "Introduction to Parallel Processing" course
is ready. Initial implementation will take place in the forthcoming
semester. Probably this will be followed by an improvement cycle.
A departmental server is the right place to host the agent and I
hope that such a server will be allocated to the project. Additional
courses can easily be added. At this point of time the right way to
conclude this paper is to cite Winston Churchill who said: ’Now
this is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning.’

REFERENCES
[1] Vinton G. Cerf. 2025. The Revenge of the Bots. COMMUNICATIONS OF THE

ACM 68, 6 (June 2025), 5.
[2] Albert Q. Jiang et al. 2023. Mistral 7B. arXiv:2310.06825 (2023), 1–9. https:

//arxiv.org/abs/2310.06825
[3] P. et al. Lewis. 2020. Retrieval-augmented generation for knowledge-intensive

NLP tasks. Advances in Neural Information Processing Systems 33 (2020),
9459–9474. https://arxiv.org/pdf/2005.11401

[4] Mistral.ai. 2025. Mistral 7B. https://mistral.ai/news/announcing-mistral-7b.
Accessed: 10-Sep-2025.

[5] PORTAINER.IO. [n. d.]. PORTAINER.IO. https://www.portainer.io/. Accessed:
15-Sep-2025.

[6] Sentence-Transformers. 2021. all-MiniLM-L6-v2. https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2. Accessed: 14-Sep-2025.

[7] Guy Tel-Zur. 2014. PDC education in the BGU ECE department. 2014 Workshop
on Education for High Performance Computing (2014), 15–20. https://doi.org/10.
1109/EduHPC.2014.9

[8] Guy Tel-Zur. 2025. Introduction to Parallel Processing - course number 361-1-
3621. http://tel-zur.net/teaching/bgu/ipp. Accessed: 9-Sep-2025.

[9] Telegram. 2025. Bots. https://core.telegram.org/bots. Accessed: 10-Sep-2025.
[10] Barry Wilkinson and Michael W. Allen. 2005. Parallel programming (2 ed.).

Pearson.

A GLOSSARY
•PTB - Python-Telegram-Bot (version 20.7 in this project)
•TTFB - Time To First Byte, how long it takes from sending the
user prompt until the model starts producing the very first output
token.
•Prompt length - the number of characters in the raw text sent
(input).
•Prompt tokens - the number of sub-word units used internally by

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/pdf/2005.11401
https://mistral.ai/news/announcing-mistral-7b
https://www.portainer.io/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://doi.org/10.1109/EduHPC.2014.9
https://doi.org/10.1109/EduHPC.2014.9
http://tel-zur.net/teaching/bgu/ipp
https://core.telegram.org/bots

EduHPC25, 2025, St Louis, MO Guy Tel-Zur

the model (the number of token is relevant when asking about the
VRAM usage)
•Completion tokens - the number of tokens the model generated
as output.
•Generation duration - time spent generating the output tokens
after the first one arrived (i.e. excluding TTFB).
•Total duration - The entire end to end time from sending the
prompt until the last token of the output, i.e. Total duration = TTFB
+ Generation duration.
•TPS - Tokens per second is the throughput. Generation TPS =
completion tokens + Generation duration (a measurement of the
Chat-bot responsiveness)
•Total TPS = prompt tokens + completion tokens + tutal duration.
This is the whole transaction throughput: how much useful work
is done over the entire request. Max. Token = The upper limit to
the output length, e.g. 128, which means that the model will not
exceed 128 tokens in the output.
•Temperature - The randomness setting (low 0.1-0.3, medium 0.7-
1.0, high <1)

A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students EduHPC25, 2025, St Louis, MO

B LOGFILE
I enclose here a logfile of the the running container where important information about the CPU-GPU offloading can be seen together with
some performance results:
telzur@TUF:~/science/smart-agent-2$ docker compose run --rm -T \
-e N_GPU_LAYERS=20 \
-e N_BATCH=256 \
-e N_CTX=768 \
--entrypoint python smart-agent /app/benchmark_llm_full.py
== LLM config ==
model_path=/models/mistral-7b-instruct-v0.1.Q4_K_M.gguf
n_ctx=768 n_batch=256 n_gpu_layers=20 flash_attn=True
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: yes
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4060 Laptop GPU, compute capability 8.9, VMM: yes
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4060 Laptop GPU) - 7622 MiB free
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /models/mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = mistralai_mistral-7b-instruct-v0.1
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 11: general.file_type u32 = 15
llama_model_loader: - kv 12: tokenizer.ggml.model str = llama
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
print_info: file format = GGUF V2
print_info: file type = Q4_K - Medium
print_info: file size = 4.07 GiB (4.83 BPW)
init_tokenizer: initializing tokenizer for type 1
load: control token: 2 '</s>' is not marked as EOG
load: control token: 1 '<s>' is not marked as EOG
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load: - 2 ('</s>')
load: special tokens cache size = 3
load: token to piece cache size = 0.1637 MB
print_info: arch = llama
print_info: vocab_only = 0
print_info: n_ctx_train = 32768
print_info: n_embd = 4096
print_info: n_layer = 32
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 14336
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: model type = 7B
print_info: model params = 7.24 B
print_info: general.name = mistralai_mistral-7b-instruct-v0.1
print_info: vocab type = SPM
print_info: n_vocab = 32000
print_info: n_merges = 0
print_info: BOS token = 1 '<s>'
print_info: EOS token = 2 '</s>'
print_info: UNK token = 0 '<unk>'
print_info: LF token = 13 '<0x0A>'
print_info: EOG token = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: layer 0 assigned to device CPU, is_swa = 0
load_tensors: layer 1 assigned to device CPU, is_swa = 0
load_tensors: layer 2 assigned to device CPU, is_swa = 0
load_tensors: layer 3 assigned to device CPU, is_swa = 0
load_tensors: layer 4 assigned to device CPU, is_swa = 0

EduHPC25, 2025, St Louis, MO Guy Tel-Zur

load_tensors: layer 5 assigned to device CPU, is_swa = 0
load_tensors: layer 6 assigned to device CPU, is_swa = 0
load_tensors: layer 7 assigned to device CPU, is_swa = 0
load_tensors: layer 8 assigned to device CPU, is_swa = 0
load_tensors: layer 9 assigned to device CPU, is_swa = 0
load_tensors: layer 10 assigned to device CPU, is_swa = 0
load_tensors: layer 11 assigned to device CPU, is_swa = 0
load_tensors: layer 12 assigned to device CUDA0, is_swa = 0
load_tensors: layer 13 assigned to device CUDA0, is_swa = 0
load_tensors: layer 14 assigned to device CUDA0, is_swa = 0
load_tensors: layer 15 assigned to device CUDA0, is_swa = 0
load_tensors: layer 16 assigned to device CUDA0, is_swa = 0
load_tensors: layer 17 assigned to device CUDA0, is_swa = 0
load_tensors: layer 18 assigned to device CUDA0, is_swa = 0
load_tensors: layer 19 assigned to device CUDA0, is_swa = 0
load_tensors: layer 20 assigned to device CUDA0, is_swa = 0
load_tensors: layer 21 assigned to device CUDA0, is_swa = 0
load_tensors: layer 22 assigned to device CUDA0, is_swa = 0
load_tensors: layer 23 assigned to device CUDA0, is_swa = 0
load_tensors: layer 24 assigned to device CUDA0, is_swa = 0
load_tensors: layer 25 assigned to device CUDA0, is_swa = 0
load_tensors: layer 26 assigned to device CUDA0, is_swa = 0
load_tensors: layer 27 assigned to device CUDA0, is_swa = 0
load_tensors: layer 28 assigned to device CUDA0, is_swa = 0
load_tensors: layer 29 assigned to device CUDA0, is_swa = 0
load_tensors: layer 30 assigned to device CUDA0, is_swa = 0
load_tensors: layer 31 assigned to device CUDA0, is_swa = 0
load_tensors: layer 32 assigned to device CPU, is_swa = 0
load_tensors: tensor 'token_embd.weight' (q4_K) (and 110 others) cannot be used with preferred buffer type CUDA_Host, using CPU instead
load_tensors: offloading 20 repeating layers to GPU
load_tensors: offloaded 20/33 layers to GPU
load_tensors: CUDA0 model buffer size = 2495.31 MiB
load_tensors: CPU_Mapped model buffer size = 4165.37 MiB
...
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 768
llama_context: n_ctx_per_seq = 768
llama_context: n_batch = 256
llama_context: n_ubatch = 256
llama_context: causal_attn = 1
llama_context: flash_attn = 1
llama_context: kv_unified = false
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (768) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
set_abort_callback: call
llama_context: CPU output buffer size = 0.12 MiB
create_memory: n_ctx = 768 (padded)
llama_kv_cache_unified: layer 0: dev = CPU
llama_kv_cache_unified: layer 1: dev = CPU
llama_kv_cache_unified: layer 2: dev = CPU
llama_kv_cache_unified: layer 3: dev = CPU
llama_kv_cache_unified: layer 4: dev = CPU
llama_kv_cache_unified: layer 5: dev = CPU
llama_kv_cache_unified: layer 6: dev = CPU
llama_kv_cache_unified: layer 7: dev = CPU
llama_kv_cache_unified: layer 8: dev = CPU
llama_kv_cache_unified: layer 9: dev = CPU
llama_kv_cache_unified: layer 10: dev = CPU
llama_kv_cache_unified: layer 11: dev = CPU
llama_kv_cache_unified: layer 12: dev = CUDA0
llama_kv_cache_unified: layer 13: dev = CUDA0
llama_kv_cache_unified: layer 14: dev = CUDA0
llama_kv_cache_unified: layer 15: dev = CUDA0
llama_kv_cache_unified: layer 16: dev = CUDA0
llama_kv_cache_unified: layer 17: dev = CUDA0
llama_kv_cache_unified: layer 18: dev = CUDA0
llama_kv_cache_unified: layer 19: dev = CUDA0
llama_kv_cache_unified: layer 20: dev = CUDA0
llama_kv_cache_unified: layer 21: dev = CUDA0
llama_kv_cache_unified: layer 22: dev = CUDA0
llama_kv_cache_unified: layer 23: dev = CUDA0
llama_kv_cache_unified: layer 24: dev = CUDA0
llama_kv_cache_unified: layer 25: dev = CUDA0
llama_kv_cache_unified: layer 26: dev = CUDA0
llama_kv_cache_unified: layer 27: dev = CUDA0
llama_kv_cache_unified: layer 28: dev = CUDA0
llama_kv_cache_unified: layer 29: dev = CUDA0
llama_kv_cache_unified: layer 30: dev = CUDA0
llama_kv_cache_unified: layer 31: dev = CUDA0
llama_kv_cache_unified: CUDA0 KV buffer size = 60.00 MiB
llama_kv_cache_unified: CPU KV buffer size = 36.00 MiB
llama_kv_cache_unified: size = 96.00 MiB (768 cells, 32 layers, 1/1 seqs), K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_context: enumerating backends
llama_context: backend_ptrs.size() = 2
llama_context: max_nodes = 2328
llama_context: worst-case: n_tokens = 256, n_seqs = 1, n_outputs = 0
graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256
graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1
graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256
llama_context: CUDA0 compute buffer size = 137.79 MiB
llama_context: CUDA_Host compute buffer size = 4.76 MiB
llama_context: graph nodes = 999
llama_context: graph splits = 136 (with bs=256), 3 (with bs=1)
CUDA : ARCHS = 500,520,530,600,610,620,700,720,750,800,860,870,890,900 | FORCE_MMQ = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.rope.freq_base': '10000.000000', 'llama.context_length': '32768', 'general.name': 'mistralai_mistral-7b-instruct-v0.1', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '14336', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '8', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '15'}
Using fallback chat format: llama-2
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 530.09 ms / 3 tokens (176.70 ms per token, 5.66 tokens per second)
llama_perf_context_print: eval time = 380.94 ms / 7 runs (54.42 ms per token, 18.38 tokens per second)
llama_perf_context_print: total time = 913.28 ms / 10 tokens
llama_perf_context_print: graphs reused = 6

A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students EduHPC25, 2025, St Louis, MO

== Running ==
Llama.generate: 1 prefix-match hit, remaining 23 prompt tokens to eval
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 349.16 ms / 23 tokens (15.18 ms per token, 65.87 tokens per second)
llama_perf_context_print: eval time = 6852.83 ms / 127 runs (53.96 ms per token, 18.53 tokens per second)
llama_perf_context_print: total time = 7237.84 ms / 150 tokens
llama_perf_context_print: graphs reused = 126
[1/5] TTFB=0.350s | gen_tps=16.99 | total=7.24s | comp_tok~117 | GPU sm% avg/max=21.7/23 | GPU mem MB avg/max=2903.3/2904
Llama.generate: 23 prefix-match hit, remaining 1 prompt tokens to eval
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 0.00 ms / 1 tokens (0.00 ms per token, inf tokens per second)
llama_perf_context_print: eval time = 6857.01 ms / 128 runs (53.57 ms per token, 18.67 tokens per second)
llama_perf_context_print: total time = 6891.17 ms / 129 tokens
llama_perf_context_print: graphs reused = 128
[2/5] TTFB=0.067s | gen_tps=16.27 | total=6.89s | comp_tok~111 | GPU sm% avg/max=21.8/23 | GPU mem MB avg/max=2904.0/2904
Llama.generate: 23 prefix-match hit, remaining 1 prompt tokens to eval
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 0.00 ms / 1 tokens (0.00 ms per token, inf tokens per second)
llama_perf_context_print: eval time = 6881.64 ms / 128 runs (53.76 ms per token, 18.60 tokens per second)
llama_perf_context_print: total time = 6915.33 ms / 129 tokens
llama_perf_context_print: graphs reused = 128
[3/5] TTFB=0.062s | gen_tps=15.61 | total=6.92s | comp_tok~107 | GPU sm% avg/max=21.5/23 | GPU mem MB avg/max=2904.0/2904
Llama.generate: 23 prefix-match hit, remaining 1 prompt tokens to eval
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 0.00 ms / 1 tokens (0.00 ms per token, inf tokens per second)
llama_perf_context_print: eval time = 6726.33 ms / 126 runs (53.38 ms per token, 18.73 tokens per second)
llama_perf_context_print: total time = 6760.74 ms / 127 tokens
llama_perf_context_print: graphs reused = 126
[4/5] TTFB=0.062s | gen_tps=16.12 | total=6.76s | comp_tok~108 | GPU sm% avg/max=21.5/23 | GPU mem MB avg/max=2904.0/2904
Llama.generate: 23 prefix-match hit, remaining 1 prompt tokens to eval
llama_perf_context_print: load time = 530.16 ms
llama_perf_context_print: prompt eval time = 0.00 ms / 1 tokens (0.00 ms per token, inf tokens per second)
llama_perf_context_print: eval time = 6821.11 ms / 128 runs (53.29 ms per token, 18.77 tokens per second)
llama_perf_context_print: total time = 6856.37 ms / 129 tokens
llama_perf_context_print: graphs reused = 128
[5/5] TTFB=0.065s | gen_tps=16.05 | total=6.86s | comp_tok~109 | GPU sm% avg/max=21.1/23 | GPU mem MB avg/max=2904.0/2904

=== SUMMARY ===
{
"model": "/models/mistral-7b-instruct-v0.1.Q4_K_M.gguf",
"n_ctx": 768,
"n_batch": 256,
"n_gpu_layers": 20,
"flash_attn": true,
"prompt": "In one paragraph, explain what GPU offloading does in llama.cpp and why it speed\u2026",
"iterations": 5,
"metrics": {
"ttfb_s": {
"mean": 0.121,
"median": 0.065,
"p95": 0.067,
"min": 0.062,
"max": 0.35
},
"gen_tps": {
"mean": 16.21,
"median": 16.12,
"p95": 16.265,
"min": 15.61,
"max": 16.99
},
"total_latency_s": {
"mean": 6.933,
"median": 6.892,
"p95": 6.916,
"min": 6.761,
"max": 7.238
},
"gpu_util_sm_pct": {
"mean": 21.5,
"max": 23
},
"gpu_mem_mb": {
"mean": 2903.9,
"max": 2904
}

}
}

	Abstract
	1 Introduction
	2 Project description
	3 Deployment
	4 Portability and Reproducibility
	5 Future work
	6 Conclusions
	References
	A Glossary
	B Logfile

