Pipeline Design

Computer Architecture
Dr. Guy Tel-Zur

8/4/2021 :JINNX [1IDT'Y



Naxnn ninon

Pipeline -n Jwin Nian DID]
D'VINX'AN JY D'V'DYNN DTN -
:D"TOIN D'NAIN -

120NN NRNPY LIpin L Pipeline-n niDNT
NNAIT [NN -



This presentation Is based on:
 MIT Open course ware "Computation Structures”
by Dr. Christopher J. Terman.
* References:

Chris Terman. 6.004 Computation

_ Structures. Spring 2017. Massachusetts
MIT Open course ware Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu.
M |T6004 2017 License: Creative Commons BY-NC-SA.

- Slides 13-15 : Slides by Prof. Shmuel Wimer Technion/BIU

In particular we will discuss material from:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computatio
n-structures-spring-2017/c7/c7s1/#1

See 7.2.2,7.2.3,7.2.4 @ MIT open course ware site


https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/index.htm
https://www.eng.biu.ac.il/wimers/courses/Logic-Design-and-Computer-Introduction/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c7/c7s1/#1
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c7/c7s1/#1

Forget circuits... Let’s Solve a Real Problem

INPUT:
dirty laundry

OUTPUT:
6 more weeks

Device: Washer
Function: Fill, Agitate, Spin

Washerpp = 30 mins

Device: Dryer
Function: Heat, Spin

Dryerpp = 60 mins

[o8 | I

PD = Propagation delay, Period



One Load At a Time

Corrar) [ T
LA YA

Everyone knows that the real Step 1: N
reason that we put off doing ]

laundry so long is not because
we procrastinate, are lazy, or
even have better things to do.

Step 2:
The fact is, doing one load at a
time is not smart.

Totalpp = Washerpp + Dryerpp

@ = 90 mins




Doing N Loads of Laundry

Step 1:
Here’s how they do laundry at P
Harvard, the “combinational” way.

Step 2:
Of course, this is just an urban

legend. No one at Harvard

actually does laundry. The Step 3:
butlers all arrive on Wednesday
morning, pick up the dirty
laundry and return it all pressed
and starched in time for
afternoon tea. cee

Step 4:

@H [OfF WH [OfF

Totalpp = N*(Washerpp + Dryerpp)
= N*90  mins




Doing N Loads... The 6.004 Way -

6.004 students Step 1:
“pipeline” the laundry
process.

Step 2:

That’s why we wait!
Step 3:

Actually, it’s more like N*60
+ 30 if we account for the
startup transient correctly.
When doing pipeline .
analysis, we’re mostly Totalpp = N * Max(Washerpp, Dryerpp)
interested in the “steady
state” where we assume we N*60
have an infinite supply of
inputs.

mins




Performance Measures

Latency:
The delay from when an input is established until the
output associated with that input becomes valid.

Harvard Laundry = 90 mins Assuming that the
_ 120 . wash is started as
6.004 Laundry mins .- soon as possible and

waits (wet) in the
washer until dryer is

Throughput: available.

The rate at which inputs or outputs are processed.

Harvard Laundry = _1/90 outputs/min
6.004 Laundry = 1/60 outputs/min




Okay, Back To Circuits...

latency = tpp,
throughput = 1 /tpp

We can’t get the answer faster,

| but are we making effective use
G(X) of our hardware at all times?

For combinational logic:

X 2
F(X) 2
G(X) 2
P(X) W

F & G are “idle”, just holding their outputs
stable while H performs its computation



o Pipelined Circuits

use registers to hold H’s input stable!

Now F & G can be working on

I input X;,; while H is performing
15) * its computation on X;. We've
X— ' I px) created a 2-stage pipeline: if we
25 have a valid input X during clock
G I cycle j, P(X) is valid during clock
20) © j+2.

Suppose F, G, H have propagation delays of 15, 20,
25 ns and we are using ideal zero-delay registers:

latency throughput
unpipelined 45 1/45
2-stage pipeline 50 1/25

worse \}!: better \i‘




Pipeline Diagrams

« Clock cycle

1 i+l 1+2 1+3

3 FXj) |F(Xi) |F(Xis2)
%ﬂ F&G
n G(Xi)) |G(Xi1) |G(Xis)
Q
5
E H H(X) [H(Xi1) H(X:2)
.D.:
X1 P(Xi)
stable :{ available
here here

The results associated with a particular set of
input data moves diagonally through the
diagram, progressing through one pipeline
stage each clock cycle.



Pipeline Diagrams

w0 Clock cycle »

i i+1 1+2 1+3
F(Xl) ,ﬁ: L}fj'e
g X | ey | HOD [
Q ( i}
2. F(Xi+1)
= X. H(Xi+)
1+1 GI:X,+ 1 ]
XTI ,
X X stable ) F[XI+2} H{XI 2]
i+2 here ’
G{}{HZ)

The results associated with a particular set of
input data moves diagonally through the
diagram, progressing through one pipeline
stage each clock cycle.



Pipeline Conventions

DEFINITION:
A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit
having exactly K registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an O-stage pipeline.

COMPOSITION CONVENTION:

Every pipeline stage, hence every K-Stage pipeline, has a register on
its OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to

cover propagation over combinational paths PLUS (input) register tpp
PLUS (output) register tsgryp.

The LATENCY of a K-pipeline is K times the
period of the system’s clock.

The THROUGHPUT of a K-pipeline is the
frequency of the clock.




Ill-formed Pipelines

Consider a BAD job of pipelining:

For what value of K is the following circuit a K-Pipeline?
ANS: none

Problem:

Successive inputs get mixed: e.g., B(A(Xi;1), Y;). This
happened because some paths from inputs to
outputs have 2 registers, and some have only 1!

This CAN’T HAPPEN on a well-formed K pipeline!



fixed Pipeline

This is mainly a 4-pipeline with a twist of 3-pipeline to allow
mixing A(X,,,) and Y, at the input of B.



A Pipelining Methodology

Step 1: STRATEGY:
Draw a line that crosses every _
output in the circuit, and mark Focus your attention on
the endpoints as terminal placing pipelining registers
points. around the slowest circuit
elements (BOTTLENECKS).
Step 2:

INPUTS UTPUTS

Continue to draw new lines
between the terminal points
across various circuit
connections, ensuring that
every connection crosses each
line in the same direction.
These lines demarcate pipeline
stages.

A

Adding a pipeline register at
every point where a separating
line crosses a connection will
always generate a valid pipeline.




Pipeline Example

OBSERVATIONS:

* 1-pipeline improves
neither L or T,

* T improved by breaking
long combinational
paths, allowing faster
clock.

* Too many stages cost L,

LATENCY | THROUGHPUT don’t improve T.
O-pipe: 4 1/4 * Back-to-back registers
TIT O MWD T are often required to
“pipe: 4 1/4 keep pipeline well-
11 2-pipe: A 1/2 formed.

2+1 D'Ip 3-pipe: 6 1/2 + increase throughput

oot oy - increase latency
3+2+1 DI - “bottleneck” problem




Pipelined Components

Pipelined systems
can be hierarchical:

* Replacing a slow
combinational component
with a k-pipe version may
let us decrease the clock
period

C . * Must account for new
4-stage pipeline, throughput=1 pipeline stages in our plan

but... but...
_— How can I pipeline
a clothes dryer???




How Do 6.004 Students Do Laundry?

They work around the bottleneck. First, they find a
laundromat with two dryers for every washer. Then they use
dryer #1 for odd-numbered wash loads and dryer #2 for even-
numbered wash loads.

#1 #2 #3 #4
|| l | ﬁ 'lf'ﬁ‘lk I|"ﬁ“|I
| | _.,_4.%.- |8 '__, ~=_.=|= L \
A A A
Washer | Load #1 | Load #2 | Load #3 | Load #4 | Load #5 | Load #6
Dryer #1 Load #1 Loagl #3 Loafl #5
Dryer #2 Load #2 Load #4
- | I ] | ] | I
TnLLes 0 30 60 90 120 150 180
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Throughput = 1 / 30 loads/min, Latency = 90 mins /load



How Do 6.004 Students Do Laundry?

They work around the bottleneck. First, they find a
laundromat with two dryers for every washer. Then they use

dryer #1 for odd-numbered wash loads and dryer #2 for even-
numbered wash loads.

Load #1

Load #2
Load #3

Load #4

Loads

minutes
v 0 30 60 90 120 150 180
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Throughput = 12 30 loads/min, Latency = 90 mins/load



Back To Our Bottleneck...

Recall our earlier example...

* C — the slowest
component — limits
clock period to 8 ns.

* HENCE throughput

limited to 1/8ns.

We could improve throughput
by
* Finding a pipelined
version of C;

OR ...

* interleaving multiple
copies of C!



Circuit Interleaving

We can simulate a
pipelined version of a
slow component by
replicating the critical
element and alternate
inputs between the
various copies.

Xi DQ ’CD

G

- C(Xi.)

This is a simple
2-state FSM 6
that alternates

between 0 and
1 on each clock CIM\J




1TN 27NN

Click for animation
\

\

) f ) f2 ©)

/\

Credit: https://en.wikipedia.org/wiki/Frequency_divider


https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Frequency_divider_animation.gif/375px-Frequency_divider_animation.gif

Y Y

Circuit Interleaving

: =C(X,.2)
E"'; e 2:tox = (f ppupsireamiiG + Lpp Laren + Tpc o + 1pp yux + r.s'.-':‘TUP.REG)
> r A \
= Cycle #1 Cycle #2 Cycle #3 Cycle #4
aw [\ \__/ [ [
FSMQ — \ / \ / \
X input S & L X L X b X X
C, input X X; X X3 X
Cooutput KRN e
C, input X X2 X X4
C, output AXKRORKRXKROKKA @ XX KAOKRACKAA
reg input XXX e KXXXXX ek ANAERIKXXXXNX
reg output X C(X,) X C(Xa) X ClXs)



Circuit Interleaving

X;
[ 2-Clock Martinizing}

“In by t;, out by t,.,”

Throughput = 1/clock
Latency = 2 clocks

N-way interleaving
is equivalent to

N pipeline Stages...

| )

N-way
intérleave

> D >
Q Co 1
- G
—>C(Xi.o)
DO~ L
—o<}—|G
D Q
= C’
N registers
—



Combine Techniques

We can combine interleaving
and pipelining. Here, C’
interleaves two C elements
and has an effective tCLK of 4
ns and a latency of 8 ns.

Since C’ behaves as a 2-stage
pipeline, two of our pipelining
contours must pass through
the C’ component.

By combining interleaving
with pipelining we move
the bottleneck from the C
element to the F element.

—sl A B ¢ ||
—> 4ns 3ns Ix4hs
D
4ns

E
2ns
T=1/5ns
L = 25ns

sSns




Summary

Latency (L) = time it takes for given input to arrive at output
Throughput (T) = rate at which new outputs appear
For combinational circuits: L = tpp of circuit, T = 1/L

For K-pipelines (K > 0):
* always have register on output(s)
* K registers on every path from input to output
* Inputs available shortly after clock i, outputs available
shortly after clock (i+K)
tck = tepreg * tep Of slowest pipeline stage + tgpryp
T=1/tex
— more throughput = split slowest pipeline stage(s)
— use replication/interleaving if no further splits possible
L=Ktqg=K/T
— pipelined latency = combinational latency



IT NAXND |[XD TV



