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Multi-Cycle Control
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FIGURE D.3.1 The finite-state diagram for multicycle control.
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Control logic
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FIGURE D.3.2 The control unit for MIPS will consist of some control logic and a register to hold the state. The
state register is written at the active clock edge and is stable during the clock cycle
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Multi-Cycle Microprogram Control

Implementing the Next-State
Function with a Sequencer

Appendix D Part 2 PPTs

Copyright © 2014 Elsevier Inc. All rights reserved.
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PCWriteCond
lorD
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MemWrite
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Control unit =

PLA or ROM
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FIGURE D.4.1 The control unit using an explicit counter to compute the next state. In this control unit, the next state is
computed using a counter (at least in some states). By comparison, Figure D.3.2 encodes the next state in the control logic for
every state. In this control unit, the signals labeled AddrCtl control how the next state is determined.
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PLA or ROM

State
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opcode field

FIGURE D.4.2 This is the address select logic for the control unit of Figure D.4.1.
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Control unit PCWrite
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FIGURE D.4.6 The control unit as a microcode. The use of the word “micro” serves to distinguish between the
program counter in the datapath and the microprogram counter, and between the microcode memory and the
instruction memory.
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Translating a Microprogram to Hardware
(Control Signals)
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T I e e

ALUOp = 00 Cause the ALU to add.
AL control Subt ALUOp =01 Cause the ALU to subtract; this implements the compare for branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU contral.
PC ALUSTEA=0 Use the PC as the first ALU input.
SRC1
A ALUScA =1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.
P 4 ALUSrcB = 01 Use 4 as the second ALL input.
Extend ALUScB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSEB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register numbers
and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and the
Register RegDst =1 contents of ALUOUt as the data.
control MemtoReg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and the
=NINIIN 22 RegDst =0, contents of the MDR as the data.
MemtoReg = 1
1
m |71 I|7 18 Read PC MemRead, Read memory using the PC as address; write result into IR (and the MDR).
+ lorD = O, IRWrite
nvyn4 Read ALU MemRead, Read memory using ALUOuUL as address; write result into MDR,
Memory Gibi=1
sequencer
Write ALU MemWrite, Write memory using the ALUQOut as address, contents of B as the data.
IorD 1
ALU PCSnurce 00, Write the output of the ALU into the PC.
PCWrite
PC write control ALUQut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents of the
PCWriteCond register ALUOut.
Jump address PCSource = 10, | Write the PC with the jump address from the instruction.
PCWrite
\ Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.
Sequencing
Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.
FIGURE D.5.1 Each microcode field translates to a set of control signals to be set. These 22 different values of the fields

specify all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0
by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output
is a don’t care and is not used.

Copyright © 2014 Elsevier Inc. All rights reserved. 44



The sequencing field can have 4 values: Fetch, Dispatch1,
Dispach2 and Sequential.

Microcode dispatch table 2

Opcode name m Opcode field | Opcode name m

000000 |  Rformat | Rformatl | | 100011 | lw w2
000010 Jmp JUMP1 101011 SW SW2
000100 1 beq ‘ BEQ1 \
2000 Tw Memi } DJWATI |27 ,0'MYD NIY'9IM AR NNIYN 2
101011 SW Meml o'nn 2

FIGURE D.5.2 The two microcode dispatch ROMs showing the contents in symbolic form and using the labels
in the microprogram.

Summary
Independent of whether the control is represented as a_finite-state diagram or as a
microprogram, translation to a hardware control implementation is similar. Each state or

microinstruction asserts a set of control outputs and specifies how to choose the next state.

The next-state function may be implemented by either encoding it in a finite-state machine or
using an explicit sequencer. The explicit sequencer is more efficient if the number of states is

large and there are many sequences of consecutive states without branching.

Copyright © 2014 Elsevier Inc. All rights reserved. 45



End of Appendix D slides



Thoughts on Control & Microprogramming



The Control Store: Some Questions

What control signals can be stored in the control store?

Those independent on data D'aIN12 D170 DI'RY N7X
Vs.

What control signals have to be generated in hardwired logic?

< 1.e., what signal cannot be available without processing in the
datapath?

Those dependent on data 021N D"I7NW NN

Remember the MIPS datapath

< One PCSrc signal depends on processing that happens in the
datapath (bcond logic)
48



Variable-Latency Memory

The ready signal (R) enables memory read/write to execute
correctly

- Example: transition from one state to another state is controlled by
the R bit asserted by memory when memory data is available

Could we have done this in a single-cycle microarchitecture?

2N qpwa — LC3b -n nnarm nixan?
35 1%w% 33 27wn 1ayn’? 1% nrwal
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Aside: Memory Mapped 1/0

Address control logic determines whether the specified address of
LDx and STx are to memory or I/0O devices

Correspondingly enables memory or I/O devices and sets up
muxes

This 1s another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store

- These signals are dependent on address
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The Microsequencer: Advanced Questions

What happens if the machine 1s interrupted?
What if an instruction generates an exception?

How can you implement a complex instruction using this control
structure?

< Think REP MOVS
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The Power of Abstraction

The concept of a control store of microinstructions enables the
hardware designer with a new abstraction: microprogramming

The designer can translate any desired operation to a sequence of
microinstructions

All the designer needs to provide is

< The sequence of microinstructions needed to implement the desired
operation

< The ability for the control logic to correctly sequence through the
microinstructions

< Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)

54



Some good examples for Microprogramming

Implement REP MOVS in a microarchitecture using
microprogramming

Guidelines: What changes, if any, do you make to the

Q

Q

Q

Q

state machine?
datapath?
control store?

microsequencer?

Another good example: Implement unaligned word memory access
using microprogramming

55



AMDT

Software Optimization Guide
for AMD Family 16h Processors

Table 1. Typical Instruction Mappings

Instruction Macro-ops Micro-ops Comments
MOV reg, [mem] 1 1: load Fastpath single
MOV [mem] , reg 1 l: store Fastpath single
MOV [mem] , imm 1 2: move-imm, store Fastpath single
\_> REP MOVS [mem], [mem] Many Many Microcode
ADD reg,red 1 1. add Fastpath single
ADD reg, [mem] 1 2: load, add Fastpath single
ADD [mem],reg 1 2: load/store, add Fastpath single
MOVAPD [mem] , Xmm 1 2: store, FP-store-data Fastpath single
VMOVAPD [mem] , ymm 2 4:2 - {store, FP-store-data} 256b AVX Fastpath double
ADDPD Xmm , Xmm 1 1: addpd Fastpath single
ADDPD xmm, [mem] 1 2: load, addpd Fastpath single
VADDED ymm, yImm 2 2:2 - {addpd} 256b AVX Fastpath double
VADDPD ymm, [mem] 2 4:2 - {load, addpd} 256b AVX Fastpath double

https://developer.amd.com/wordpress/media/2012/10/SOG_16h_52128 PUB_Rev1_1.pdf




Advantages of Microprogrammed Control

Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)

= High-level ISA translated into microcode (sequence of microinstructions)

= Microcode enables a minimal datapath to emulate an ISA

= Microinstructions can be thought of as a user-invisible ISA (micro ISA)

Enables easy extensibility of the [SA
= Can support a new instruction by changing the microcode

< Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence an
arbitrary “program’ as a microprogram sequence

< will need some new state (e.g. loop counters) in the microcode for sequencing more

elaborate programs

57



Update of Machine Behavior

The ability to update/patch microcode in the field (after a processor
1s shipped) enables

< Ability to add new instructions without changing the processor!

< Ability to “fix” buggy hardware implementations

Examples

< IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

- IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM JR&D,
May/Jul 2004.

< B1700 microcode can be updated while the processor 1s running

User-microprogrammable machine!
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http://bitsavers.informatik.uni-stuttgart.de/pdf/ibom/370/GF20-0385-0_An_Introduction_to_Microprogramming_Dec71.pdf
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Update Manager

“Mlg:rocode update for “Iﬁ;teI,XSG 64

Update Manager

Clear Select All Refresh Install Updates Select Al Refresh Install Updates
TS ‘ TS | e ame ‘ Old Version
- g gtﬂz:“th tools and daemons 5:53-0ubuntu3 5 O Q gllltljeeiucth tools and daemons 5.53-Oubuntu3.5
© a 2::1.:5“9. HTML-embedded scripting language (metapackage) 143-4ubuntuz.10 © 0 ggrl:tzi:side, HTML-embedded scripting language (metapackage) e
& n #LI‘I:E::;T(:::;&O.H .58~20.04.31 £.13.0.48.54~20.04.30 4 n #Lneulj:jil:‘z:s;lo.ﬂ .58~20.04.31 513.0.48.54~20.04.30
t B > 208 ' o * 208

Commandline package manager

intel-microcode

. : 3.20210608.0 )21
Processor microcode firmware for Intel CPUs Ll

Commandline package manager

intel-microcode
Processor microcode firmware For Intel CPUS

3.20210608.0ubuntu.2i

' Description ” Packages ” Changelog '

' Description H Packages H Changelog '

- CVE-2020-2451 3; INTEL-TA-00465
— Alex Murray <alex.murray@canonical.com= Wed, 26 May 2021 13:44:00 +0930 ‘
intel-microcode (3.20210216.0ubuntu0.20.04.1) Focal-security; urgency=medium

* SECURITY UPDATE: Mew upstream microcode datafile 2021-02-16 (LP: #1927911)
+ Updated Microcodes:
sig 0%x00050654, pf_mask 0xb7, 2020-12-31, rev 0x2006a0a, size 36864
sig 0x00050656, pf_mask 0xbf, 2020-12-31, rev 0x4003006, size 53248
sig 0%00050657, pf_mask 0xbf, 2020-12-31, rev 0x5003006, size 53248
sig 0x000706a1, pf_mask 0x01, 2020-06-09, rev 0x0034, size 74752
-CVE-2020-8695 RAPL, INTEL-TA-00389

-CVE-2020-8696 Vectolr Register Leakage-Active, INTEL-TA-00381 _
-CVE-2020-8698 Fast forward store predictor, INTEL-TA-00381

- Alex Murray <alex.murray@canonical.com= Mon, 10 May 2021 16:42:34 +0930

intel-microcode (3.20201110.0ubuntu0.20.04.2) focal-security; urgency=medium

* SECURITY REGRESSION: Some CPUs in the Tiger Lake Family sig=0x806¢1

fail to boot (LP: #1903883)
-remove 06-8¢-01/0x000806¢1 microcode

- Alex Murray <alex.murray@canonical.com= Thu, 12 Mov 2020 09:54:34 +1030

5 updates selected (12 MB)

This package contains updated systemn processor microcode for Intel i686 and Intel X86-64 processors, Intel
releases microcode updates to correct processor behavior as documented in the respective processor
specification updates.

For AMD processors, please refer to the amd&4-microcode package.

5 updates selected (12 MB)




Microcode patch, an example: w

CVE-2020-8696

Improper removal of sensitive information before storage
or transfer in some Intel(R) Processors may allow an
authenticated user to potentially enable information

disclosure via local access.

References:



Review: The Power of Abstraction

The concept of a control store of microinstructions enables the
hardware designer with a new abstraction: microprogramming
N'Y77002XNN AVIN DX NP TIY 770WnN microprograming 7w 0o011pn

The designer can translate any desired operation to a sequence of
microinstructions

All the designer needs to provide is

< The sequence of microinstructions needed to implement the desired
operation

< The ability for the control logic to correctly sequence through the
microinstructions ( micro-sequencer )

9 Any additional datapath elements and control signals needed (no
need if the operation can be “translated” into existing control signals)

NN VIQj77 NINDNNRY NN 72 NINAIN-N{7M 7 20TO7 nXR1IN 72 Mn7 N
I'N D'M"{7 0D'712'0 7¥ DIAONT7 NIN ANINN ON DIXRIN-N7'NN 72 1T0N
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Microcoded Multi-Cycle MIPS Design

Copyright © 2014 Elsevier Inc. All rights reserved.



More Micro-Programming terminology




Horizontal Microcode

“ A single control store provides the control signals

-+
>
(@
-+
3
Microcode -
storage ALUSrcA o
lorD OCD
Outputs < IRWrite ‘»
PCWrite Ko
. | -
MIPS design PCWriteCond 42
. . o
From . n-bit uPC input | _ o
P&H, Appendix D 1 I 3
~
\1 \ﬁj'/ Microprogram counter S:r?tl:glncmg
Adder i
>
: — Add lect logic |«
Microprogram e
counter

Inputs from instruction
register opcode field

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.] Control Store: 2"X k bit (l'lOt including Sequencing) 71



Vertical Microcode

“ Two-level control store: the first specifies abstract operations

1-bit signal means do this RT
| (or combination of RTs)
Abstract Microcode - “PC « PC+4”
. T storage . :
operations. \ PC < ALUOUt
' “PC < PC[ 31:28 ],IR[ 25:0 ],2’b00”"
Register Outputs < “ = PC[ LIR[ ]
Transfer Level IR < MEM[PC]”
Operations “A— RF[IR[ 25:21]]”
- “B « RF[ IR[ 20:16 ] ]”
n-bit uPCinput [ | ...
1 I m-bit input
1 Jy . Sequencing
V4 Microprogram counter control ROM
Adder i
Address select logic |« k b .
— -bit|control signal output
[Based on original figure from P&H CO&D, COPYRIGHT . .
2004 Elsevier. ALL RIGHTS RESERVED.] Inputs from instruction o
register opcode field S 8 B9 =
£s30g¢g
o
>
o

If done right (i.e., m<<n, and m<<k), two ROMs together
(2»Xm+2mXk bit) should be smaller than horizontal microcode ROM (27Xk bit)



Nanocode and Millicode

Nanocode: a level below traditional microcode

< microprogrammed control for sub-systems (e.g., a complicated
floating-point module) that acts as a slave in a microcontrolled
datapath

Millicode: a level above traditional microcode

- ISA-level subroutines that can be called by the microcontroller to
handle complicated operations and system functions

bJ

- E.g., Heller and Farrell, “Millicode in an IBM zSeries processor,’
IBM JR&D, May/Jul 2004.
YU INXN INT XN QpYn DA IR 1v1'0IM
In both cases, we avoid complicating the main u-controller
You can think of these as “microcode” at different levels of

abstraction
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Millicode 1n an IBM zSeries processor

Millicode In an
IBM zSeries
Processor

Because of the complex architecture of the zSeries®
processors, an internal code, called millicode, is used to
implement many of the functions provided by these systems.
While the hardware can execute many of the logically less
complex and high-performance instructions, millicode is
required to implement the more complex instructions, as well
as to provide additional support functions related primarily
to the central processor. This paper is a review of millicode
on previous zSeries CMOS systems and also describes
enhancements made to the z990 system for processing of the
millicode. It specifically discusses the flexibility millicode
provides to the z990 system.

@)
T

eller
arrell

<
W
I



Nanocode Concept Illustrated

a “ucoded” processor implementation

RO

uPC |+

processor
datapath

—

We refer to this
as “nanocode”
when a ucoded

subsystem is embedded

in a ucoded system

a “ucoded” FPU implementati

21T AN [1DnN

]

.

ROM

—

uPC

arithmetic
datapath
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Microcode

credit: https://everything2.com/title/microcode

Microcode is often used to refer to assembly language or even raw
machine language, but it isn't either of these things. It is actually
lower-level code, hard-coded on the silicon itself, that determines
how the processor responds to a given opcode and operand.

What is done is that a miniature ROM is on the chip. Every clock
cycle, based on an internal counter, a given set of bits is read from
the ROM. This set of bits covers all of the outputs needed to
manipulate the internal logic as well as a few of the external signals.
This set of bits is what asserts load and store lines, chip select lines,
activates adders, and so forth. The idea behind RISC was to make
each instruction just one line of these digital outputs.



Nanocode

credit: https://everything2.com/title/nanocode
As the name suggests, nanocode is at a lower-level than microcode.

Machine code is the raw instructions fed into a processor, this is first
decoded by the microcode. This is a translation from the hierarchical
organization of instructions that makes sense to humans, to the actual
steps that need to be taken in various parts of the processor.
Microcode is written in a lookup table to be referenced as each
instruction is executed.

Nanocode is more finely grained than microcode. It is responsible
for converting the logic of the microcode to the low-level electrical
signals that will cause the desired result. Nanocode is hardwired to
do such things as enabling logic gates to fire their output onto
Interconnects, enabling the proper gates to input same, and setting
the proper flags on the ALU. Very low level stuff that each individual
block of a processor needs to carry out its little part of the instruction.



Summary of findings

Microcode WA |'"'V7 Yin
Wikipedia-a

https://en.wikipedia.org/wiki/Microcode



Multi-Cycle vs. Single-Cycle uArch

“ Advantages
“ Disadvantages

“ You should be very familiar with this right now
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Microprogrammed vs. Hardwired Control

“ Advantages

“ Disadvantages

757 ont'Nn Nan Qpwn

80



Comparison
Attributes Hardwired Control Microprogramming
Control

Speed Fast Slow
Cost of More expensive Cheaper
Implementation

Flexibility Difficult to modify Flexible
Ability to handle Difficult Easier
complex instruction

Decoding Complex Easy
Application RISC CISC

Instruction Set Size Small iiie

Credit: https://ictbyte.com/microprocessor/difference-between-hardwired-and-micro-programmed-control-unit/
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Agenda for Today & Next Few Lectures

" Single-cycle Microarchitectures

" Multi-cycle and Microprogrammed Microarchitectures

“ Pipelining

" Issues in Pipelining: Control & Data Dependence Handling, State
Maintenance and Recovery, ...

* Qut-of-Order Execution

“ Issues in OoO Execution: Load-Store Handling, ...
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Recap of Last & this Lecture

Multi-cycle and Microprogrammed Microarchitectures
< Benefits vs. Design Principles

< When to Generate Control Signals

- MIPS State Machine, Datapath, Control Structure

< Microprogrammed Control: ulnstruction, uSequencer, Control Store

Microprogramming benefits

< Power of abstraction (for the HW designer)
< Advantages of uProgrammed Control

< Update of Machine Behavior
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Why Pipelining?



Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

< Some hardware resources are 1dle during different phases of
instruction processing cycle

29 “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

< Most of the datapath 1s 1idle when a memory access 1s happening
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Can We Use the Idle Hardware to Improve Concurrency?

Goal: More concurrency =2 Higher instruction throughput (i.c.,
more “work” completed in one cycle)

Idea: When an instruction 1s using some resources 1n 1ts
processing phase, process other instructions on idle resources not
needed by that instruction

< E.g., when an instruction is being decoded, fetch the next instruction

< E.g., when an instruction is being executed, decode another
instruction

- E.g., when an instruction 1s accessing data memory (1d/st), execute
the next instruction

< E.g., when an instruction 1s writing its result into the register file,
access data memory for the next instruction

88



Pipelining




Pipelining: Basic Idea

More systematically:
< Pipeline the execution of multiple instructions

Analogy: “Assembly line processing” of instructions — i iz :naivar anar

Idea:

< Divide the instruction processing cycle into distinct “stages” of
processing

- Ensure there are enough hardware resources to process one instruction
in each stage

< Process a different instruction in each stage

Instructions consecutive in program order are processed in consecutive
stages

Benefit: Increases instruction processing throughput =I1PC
(=1/CPI)

Downside: Start thinking about this... nnrrya??? 90



Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F

D

E

W

D

Pipelined: 4 cycles per 4 instructions (steady state)

F

D

E

W

> Time

Is life always this beautiful?

L B AN

F

D

E

W

> Time
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The Laundry Analogy

] 6 PM 7 8 9 10 1 12 1 2 AM
Time

Task
~( .—
—
—
S| .—/
—
E'

order
SIE
 —
c =
—) RN
D ——
} =

o3}

" “place one dirty load of clothes in the washer”

“ ‘“when the washer is finished, place the wet load in the dryer”

" “when the dryer is finished, take out the dry load and fold”

“ “when folding 1s finished, ask your roommate (??) to put the clothes away”

- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources

92

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



ased on original figure from [P&H CO&D, COPYRIGHT 2004 El

Pipelining Multiple Loads of Laundry

6 PM 7 8 9 10 11 12 1 2 AM

Time o p— T T [

Task
1
~ @oE

order
B

C

D

6 PM 7 8

Timem 1 l | | >

Task
order =g
. §5=m
' - no additional resources
c toEl

— - throughput increased by 4
v .. - latency per load is the same

9 10 11 12 1

- 4 loads of laundry in parallel

B

sevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice

the slowest step decides throughput
94

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice

throughput restored (2 loads per hour) using 2 dryers
95

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



An Ideal Pipeline  ?nMya '"o%T'X 7212p7'n7 waTl Nn

Goal: Increase throughput with little increase 1n cost (hardware
cost, 1n case of instruction processing)

Repetition of 1dentical operations

< The same operation 1is repeated on a large number of different inputs
(e.g., all laundry loads go through the same steps)

Repetition of independent operations
< No dependencies between repeated operations
Uniformly partitionable suboperations a1 ni7'an? nT'NX npI7n

< Processing can be evenly divided into uniform-latency suboperations
(that do not share resources)

Fitting examples: automobile assembly line, doing laundry

- What about the instruction processing “cycle? 96



Ideal Pipelining

T psec

, combinational logic (F,D,E,M,W)

throughput

—  BW=~(1/T)

—| |—| T/2ps (F,D,E)

—| T/2 ps (M,W)

—> — BW=~(2/T)

T/3
ps (F,D)

T/3
ps (E,M)

/3 L, | BW=~(3/T)
ps (M,W)
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More Realistic Pipeline: Throughput

Nonpipelined version with delay T T=combinational logic
_ _ delay
BW = 1/(T+S) where S = latch delay o_i -, delay
—> T ps —
k-stage pipelined version
BW =1/ (T/k+S) Latch delay reduces throughput

k-stage

BW__ =1/(1gatedelay+S)

AWOKRY 71TA DN W7 grIv K QwKD 71212

(switching overhead b/w stages)

T/k T/k

- | — |—> © & & o 0 0 0 —) — |

PS PS
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More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G

Cost = G+L where L = latch cost
NNNoN

NI7y-

e " G gates > — nIA-]] N-

k-stage pipelined version
Cost =G+ L%k

Latches increase hardware cost
k-stage

—_— —»G/k —> —»ooooooo—»G/k —> —

272" NIANT 7Y IXTRN 190NN NN
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Pipelining Instruction
Processing




Remember: The Instruction Processing Cycle

1. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AQG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

AG=Address Generation 0]



Remember the Single-Cycle

Instruction [25-0] @\

Jump address [31-0]

Y A
26 left 2 28

PC+4 [31-28]

Add

Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

Read
address

Instliuction

Instruction
memory

Instruction [31-26]
———————

Instruction [25—21]

Instruction [20— 16]

LG

M
u

Instruction [15—11] 1*
—_

Instruction [15-0]

ALU
Add result
Jump
Read
register 1 Read
Read data 1
register 2
~ Registers  Read ALU ALU
Write data 2 0 result Address I?jead 1
register M ata M
u
. u
Write X Data M
data | 1
) memory 0
»| Write
bcond™| gata
16 m(ﬁ
\ Sign |\
\ @ \
Instruction [5- 0] r
— | T —>

— BW=~(1/T)
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Dividing Into Stages

200ps 100ps 200ps 200ps 100ps

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation
: /knore
/ fOI’ now
Add ’\‘
4 Add re';\glttj
@
left 2
D Read
—| PC Address register 1 Read
Read data 1
Instruction regiStell'Rzegisters Read ALU Z::B
etruction Yggitgter data 2 %l result Address . %2?;’ m RF
memory | X\;rti;e 1X memory Ol): Write
Write
data

16 ﬂsz
\ Sign |\
\ @ \

Is this the correct partitioning?

Why not 4 or 6 stages? Why not different boundaries?
103

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



I'2 AXIWN

Instruction Pipeline Throughput " qutievee

Pipelined

Program
execution . 2 4 6 8 10 12 14 10 18 x100ps
order ime T I T | T l I ' ! >
(in instructions)

w $1,100(80) |G " |Reg| AU | %R | Reg

< > Instructi Dat
Iw $2, 200($0) 800ps nsf;l’:(fhlon Reg ALU ac:ezs Reg
< >l Instruction
| lw $3, 300($0) 800ps fetch
niMw-1;7'91000 800ps

Program x100ps
execution Time 2 4 6 8 10 12 14 > P
order ’ ! ! ! ' ' | ]
(in instructions) .

w$1,100(80) | "EEE"|  [Rea| AU | SRR | Reg

Instruction Data
Iw $2, 200($0) 200ps fetch Regf ALU access | o9
<+—¥Instruction Data

| lw $3, 300($0) 200ps fetch Reg| ALU access | &9

Pt P P P¢—»
200ps 200ps 200ps 200ps 200ps

S5-stage speedup 1s 4, not 5 as predicted by the 1deal model. Why?
nx¥xnn .BW=1/200 :nnnn o'wnna ,BW=1/800 :jI"vn D'wan2a :naIwn

104
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Enabling Pipelined Processing: Pipeline Registers

No resource 1s used by more than 1 stage!

IF/ID ID/EX EX/MEM MEM/WB
= g - "
Add + i-u UE
(@) (@) o \
4 o & Add re'ggl(tj - \
| Next PC

Read
register 1 Read
data 1

Read
register 2 :
result Address

Instruction L Registers Read
memory Write data 2 0
register M
Write 3 g
data a mal
D Write
[\ data
L]
16 32
N Sign |\ E -
| @ \ E

Pipeline registers L L |

—» Address

PC. |
Instruction

Read
data

| IR,

Data
memory

| | Aout,,|

|
| MDR,, |
(ex==-)

| B,,

[ [ Aout,|

T/k T/k
ps ps

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelined Operation Example L

All mnstruction classes must follow the same path
and timing through the pipeline stages.

Any performance impact?

Add
4 ]
c Read
| PC Address 2 register 1 Read
= Read data 1
[2] »
; = register 2 Zero > —
Instruction L Registers Read ALU ALu
memory Write data 2 result Address Read] | 1
register Dat data M
ata
Write memory u
data 8(
Write
" data
16 . 32
N Sign |\
\ @ \
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Pipelined Operation Example

_awnan

| sub $11, $2, $3 |

T

> ()
v I Write back |
X
r 1
IF/ID ID/EX EX/MEM MEM/WB
" 1 1 1 1
Add > >
Add
4 Add result
c Read
PC Address £ register 1 Read ’\
% Read 2 e Zero > >
. E= register
In;t;ch(r)yn | — Wiite Registers Reaq 5 ALU ALu Read
[ A data 2 I | M result Address data 1‘
° ° ° 7
Is life always this beautiful:
16 / , \32 _I J
\ Sign |\
A} @ A} >
Clock 6 — L __‘l

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Illustrating Pipeline Operation: Operation View

nst,
nst,
nst,
nst,
nst,

D

L t, t, t, t, ty =

|F ID EX MEM||WB
|F ID EX MEM|| WB
|F ID EX MEM]|| WB

IF_{ID l[Ex__|[MEM|[WB <

F__lip_ |[ex_|[MEM

IF__|lID__||EX <

steady state IF ID %

(full pipeline) |F %
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Illustrating Pipeline Operation: Resource View
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Control Points in a Pipeline

PCSrc
0
M
u
X
)
IF/ID ID/EX EX/MEM MEM/WB
Add ,\'
Add
4 = A osult
Branch
Shift
RegWrite left 2
S Read MemWrite
PC {-#=>| Address 3 register 1 Read
= Read data ALUSrc
; 2 register 2 ’ Zero » MemtoReg
Instruction = 9 )
memory > — _ Registers  Read ALU ALU Read
Write data 2 result »| Address adl_ Lt
register data M
Write Data u
| data - memory (;(
Write
data
Instruction T
15-0 16 ’ 32 6
[ : N Sign \ ALU \
\ |extend \ control MemRead
Instruction
[20-16]
0
M ALUOp
Instruction u
[15-11] X
Based on original figure from [P&H CO&D, 1
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.] RegDst

Identical set of control points as the single-cycle datapath!! 110



Control Signals in a Pipeline

“ For a given instruction
- same control signals as single-cycle, but
< control signals required at different cycles, depending on stage

= Option 1: decode once using the same logic as single-cycle and buffer

signals until consumed "
Option 1: Decode once ‘ L
and prOpagate InstI’UCtlﬂ> Control > M | WB L
EX[— M — lwe[
Option 2: Decode on demand IF/ID ID/EX EX/MEM MEM/WB

= Option 2: carry relevant “instruction word/field” down the pipeline and
decode locally within each or in a previous stage

Which one is better?
This option may reduce the cost of the latches — reduce the number of control latches
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RegWrite napan nixa Tynnl n'ndinn nnalma

Pipelined Control Slgnals

PCSrc

PC

IF/ID

»| Address

Instruction
memory

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

Instruction

ID/EX
EX/MEM
Control M | EM/WB
EX M
Add
) >Add result e
§ Shift Branch
left 2 o
ALUSrc §
Read 5 3
register 1 Read = %
Read data 1 . %
register 2 Zero o 2
_ Registers Read Vs ALU ALU
Write data 2 0 result Address n
register M D M
. u ata U
__,| Write X memory o
data 1 0
Write
data
Instruction
16 32 6
[15-0] \ Sign N ALU MemRead
N “lextend N | control
Instruction
[20-16]
0 ALUOp
M
Instruction u >
[15-11] 1X
T RegDst T _
119D
| ) 4




Remember: An Ideal Pipeline jiThn

Goal: Increase throughput with little increase in cost (hardware
cost, in case of instruction processing)X?77 D'AIY'NN NIND N7TaN
N7y NO0oIN

Repetition of identical operationsD'viap D'TYX 7V NI'FNITN

< The same operation is repeated on a large number of different inputs
(e.g., all laundry loads go through the same steps)

Repetition of independent operations NNIW NI71Y9 VIX'A N71D
< No dependencies between repeated operationsnI7Iiyon ' NI7N 'X
Uniformly partitionable suboperations NIT'NX NI'NYN

< Processing an be evenly divided into uniform-latency suboperations
(that do not share resources)

Fitting examples: automobile assembly line, doing laundry

9 What about the instruction processing “cycle”? 113



Instruction Pipeline: Not An Ideal Pipeline

“ Identical operations ... NOT! NIN'YAN

= different instructions = not all need the same stages

Forcing different instructions to go through the same pipe stages
—> external fragmentation (some pipe stages idle for some instructions)

“ Uniform suboperations ... NOT!

= different pipeline stages = not the same latency

Need to force each stage to be controlled by the same clock

—> internal fragmentation (some pipe stages are too fast but all take the same
clock cycle time)

“ Independent operations ... NOT!

= 1nstructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure the
pipeline provides correct results

—> pipeline stalls (pipeline is not always moving) 114



Pipelining continues
in next lecture slides
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